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2.1 Quanta 
 

INTRODUCTION TO QUANTUM THEORY 

 
 

 
Challenges to classical theory 

 
At the beginning of the twentieth century many experimental observations and 
theoretical problems associated with matter on the atomic scale could not be explained 
by classical physics.   During the next three decades, a new theory was developed to 
explain the behaviour of tiny particles in a range of phenomena such as blackbody 
radiation, the photoelectric effect, atomic spectra and the nature of light.   This theory 
is called quantum mechanics and is based on the notion that many physical quantities 
can only exist in discrete amounts or quanta.   Many of the ideas of the quantum wor ld 
conflict with our real-life experience, therefore they are often difficult to comprehend.   
Therefore, it is important to keep an open mind and to accept that you will not always 
understand everything at the first attempt.   This led to the following comments from 
two famous quantum physicists:  
 
“If quantum mechanics hasn’t profoundly shocked you, you haven’t understood it yet.” 

           Niels Bohr 
 

“I think it safe to say that no one understands quantum mechanics .” 
Richard Feynman 

 
The following sections summarise the experiments and observations that  played a key 
role in the development of quantum theory.   The limitations of classical physics are 
contrasted with the success of a quantum mechanical approach to explaining the 
observed phenomena.  
 
 
 
 
 
 
 
 
 
 
 
 
 



Blackbody radiation 
 
When an object is heated it can radiate large amounts of energy as infrared radiation. 
We can feel this if we place a hand near, but not touching, a hot object. When an object 
is heated it starts to glow a dull red, followed by bright red, then orange, yell ow and 
finally white. At extremely high temperatures it becomes a bright blue-white colour. 
 
In order to understand the observed distribution of wavelengths in the radiation 
emitted by a black body, measurements were made of the intensity of the light emitted 
at different frequencies (or wavelengths) and at different temperatures.  
 
A black body is an ideal system that absorbs all radiation that falls on it.   A surface that 
absorbs all wavelengths of electromagnetic radiation is also the best emitter of 
electromagnetic radiation at any wavelength.   The continuous spectrum of radiation 
emitted by a black body is called Blackbody radiation. 
 
A useful approximation of a black body is a                         
small hole leading to the inside of a hollow                                                        
object.   Any radiation entering the hole is                          
trapped inside the cavity; hence the hole acts                                                                                                                                                                              
as a perfect absorber.   The radiation leaving                            
the cavity through the small hole depends                                 
only on the temperature of the walls and not                                 
on the material of which the walls are made.                Figure 1: A model of a black body 
 
The distribution of wavelengths in the radiation from a cavity such as the one shown 
above was studied experimentally.   Figure 2 shows how the intensity of radiation varies 
with wavelength, frequency and temperature. 
 

 

 
Figure 2:   Graphs of specific intensity against wavelength and frequency 

 



 
 

 
As the temperature increases, the amount of emitted radiation increases and the peaks 
of the wavelength distributions shift towards higher frequencies (shorter wavelengths).  
 
The graph of specific intensity against wavelength is similar to the frequency graph but 
the shape is reversed.   For the wavelength distribution, the specific intensity, I, of the 
radiation emitted is defined as the power per unit area for radiation between λ and Δλ 
with units W m–3. For the frequency distribution, the specific intensity I is defined as 
the power per unit area for radiation between f and Δf and has units W m–2 Hz–1.   
Although the definition of specific intensity used is a useful approximation, it does not 
take into account the solid angle.    
 
Classical physics assumes that as an object is heated, its atoms (charged nuclei and 
electrons) act like small harmonic oscillators, which behave as tiny dipole aerials and 
emit electromagnetic radiation.  The word ‘harmonic’ here implies that the overtones 
are also considered. The energies of the oscillators are then treated according to the 
principle of equipartition of energy which is not considered here.  
 
Attempts to obtain theoretically the correct black-body graph using classical mechanics 
failed. Wien’s displacement law  was consistent with the peak shift at increasing 
temperature observed at higher frequencies (lower wavelengths). Later Lord Rayleigh 
obtained an equation that ‘fitted’ at low frequencies but tended to infinity at high 
frequencies (see line on the above frequency graph). This divergence, called the 
ultraviolet catastrophe, which suggests that the energy emitted would become infinite 
as the wavelength approaches zero, is clearly wrong. 
 
In 1900 Planck produced a ‘combined’ relationship, which gave excellent agreement 
with the experimental curves.   Planck’s solution was based on the following 
assumptions: 
 

 The radiation from the cavity came from atomic oscillators in the cav ity walls 

 The energy of the oscillators can have only certain discrete values or is quantised  

 The oscillators emit or absorb energy only when making a transition from one 
state to another 

 
The oscillator energy is given by the expression:   
 
                                                                E = nhf                                                                   (1) 
 
where E is energy, f is frequency, h is Planck’s constant (6.63 x 10-34 Js) and n = 0, 1, 2.... 
 
It must be emphasised that Planck derived this relationship in a mathematical way with 
no justification as to why the energy should be quantised.   To Planck the oscillators 
were purely theoretical and radiation was not actually emitted in ‘bundles’, it was just a 
‘calculation convenience’. It was some years before Planck accepted that the radiation 
was really absorbed or emitted in energy packets.   This development marked the birth 
of quantum theory. 



 
 

Photoelectric effect 
 
In 1887 Hertz observed that a spark passed between two plates  more often if the plates 
were illuminated with ultraviolet light. Later experiments by Hallwachs and Lenard gave 
the unexpected results we are familiar with from the Higher, namely: 
 
(a) No electrons are emitted from a metal surface when illuminated with low 

frequency radiation independent of light intensity e.g very bright red light  
(b) Electrons are only emitted when the incident radiation is greater than a threshold 

frequency 
(d) The speed of the emitted electrons increases with increasing light frequen cy, but 

not with the intensity of the light.  
(c) Increasing the intensity of the light only produced more emitted electrons.  
 
These results were surprising because it was thought that energy should be able to be 
absorbed continuously from a wave irrespective of the frequency of the light. As the 
intensity of the light increased, energy should be transferred to the metal at a higher 
rate and the electrons should be ejected with higher kinetic energy.  
 
In 1905 Einstein, successfully explained the photoelectric effect.   Einstein proposed 
that electromagnetic radiation is emitted and absorbed in small packets or photons. The 
energy of each photon is given by: 
 
                                                                E = hf                                                                     (2) 
 
where E is the energy of a photon of radiation of frequency f and h is Plank’s constant 
 
This proposal also explained why the number of electrons emitted depended on the 
irradiance of the electromagnetic radiation and why the velocity of the emitted 
electrons depended on the frequency. It did not explain the ‘packets’ or why they 
should have this physical ‘reality’.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
 

 
 

Bohr model of the atom 
 
Rutherford’s scattering experiment indicated that the positive charge of the atom was 
concentrated in a space that was small in comparison to the size of the atom, which he 
called the nucleus.   The negatively charged electrons were considered to be in a 
relatively large volume outside the nucleus.   Rutherford proposed that the electrons 
move in orbits around the nucleus similar to the way in which planets orbit the sun.   
This is sometimes referred to as the planetary model of the atom.   
 
In classical mechanics, the central force of an electron in uniform circular motion is 
balanced by the electrostatic attraction of the nucleus. However, an accelerating 
negative charge should radiate electromagnetic waves.   As the electron loses energy, it 
should move in an ever decreasing orbit until it eventually  spirals into the nucleus.   
However, this does not happen.   Therefore, a classical model of the atom cannot 
explain why the electrons remain in orbit’? Do they in fact ‘orbit’? 
 

 
 
In the late nineteenth century attempts were made to analyse the line spectra observed 
when a low pressure gas undergoes an electric discharge.   Balmer found an empirical 
equation that predicted the wavelengths of a group of lines in the emission spectra of 
hydrogen, in 1885.  
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where λ is the wavelength, R the Rydberg constant, n is an integer 3, 4, 5.… 
 
Other lines in the spectrum of hydrogen were then discovered.   In the Lyman series, 
the first term in the bracket is replaced by the fraction 1/12, while in the Paschen series, 
the fraction 1/32 is substituted for the first term in the bracket. However, there is no 
theoretical basis for these equations and they only work for hydrogen and atoms with 
one electron, e.g. ionised helium. 
 
 
 

 



In 1913 Bohr introduced a new model of a hydrogen atom in which: 
 

 The electron moves in circular orbits around the nucleus due to electrostatic 
attraction 

 Only certain orbits are allowed, in which the accelerating electron does not 
radiate energy in the form of electromagnetic waves.  

 The atom emits radiation when the electron moves from a permitted orbit with 
higher energy to a permitted level of lower energy.   The transition from a higher 
to a lower level is accompanied by the release of a photon of energy.   Similarly, 
absorption of a photon can promote an electron from a lower level to a higher 
level but only if the energy of the photon is exactly equal to the energy 
difference between the two levels.   Transitions between energy levels give the 
characteristic line spectra for elements studied in the Higher.  

 
Bohr postulated that in the allowed orbits the angular momentum of the electron is 
quantised and equal to an integral multiple of h/2π:  
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where m is the mass of the electron, v is the speed of the electron in its orbit, r is the 
orbital radius, h is Planck’s constant and n is an integer 1, 2, 3.… 
 
Thus for any specific orbit n we can calculate the radius of that orbit given the 
tangential speed or vice versa. 
 

 
Theoretical aside 
 
For the hydrogen atom with a single electron, mass me revolving around a proton (or 
more correctly around the centre of mass of the system), we can assume the proton is 
stationary since it is ~2000 times bigger.  
 
Hence, equating the electrostatic force and centripetal force mev2/r: 
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where εo is the permittivity of free space for the nth orbit. 



 
 

 
 
Equations (4) and (5) can be solved simultaneously to give:  
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For the nth orbit. 
 
Calculating r1 for the radius of the first Bohr orbit uses data given in assessmentsnamely 
h, me, e, ε0, and gives r1 = 5.3 × 10–11 m. 
 
These equations give the values of the radii for the non-radiating orbits for hydrogen 
and the value of n was called the quantum number of that orbit. 
 
Equations (6) and the derivation are outwith the Arrangements but both Coulomb’s law 
and the centripetal force are included.  
 
(The Hartree atomic units used in atomic physics have e = me = h/2π = 1 with c = 137 
and the radius of the first Bohr orbit = 1 Bohr.)  

Worked Example 

 
For the hydrogen atom, calculate the velocity of an electron in the first Bohr orbit of 
radius 5.3 × 10–11 m. (The electronic mass me and h are given data for learners.)  
 

Using 
2

nh
mvr   with n = 1 we obtain v = 2.2 × 106 m s–1. 

 
Note: Bohr’s theory only applies to an atom with one electron, eg the hydrogen atom or 
ionised helium atom. Equation (4) is on the data sheet for Advance Higher Physics.  
 
However, as mentioned above, the idea of energy levels can be extended to all atoms, 
not just hydrogen.  
 
So this theory is not complete since it did not allow any prediction of energy levels for 
any specific element nor did it explain why angular momentum should be quanti sed or 
why electrons in these orbits did not radiate electromagnetic energy! Another question 
was, ‘what happens during a transition?’ 
Quantum mechanics shows that we cannot describe the motion of an electron in an 
atom in this way. 
 
 
 
 
 



 
 

Wave particle duality 
 
The Higher course introduced the idea that light has both particle and wave like 
properties.   When light (in the form of electromagnetic radiation) interacts with 
matter, as in the photoelectric effect and Compton scattering, it behaves as a parti cle.   
In contrast, when light (and other electromagnetic waves) exhibits interference and 
diffraction effects, it is behaving as a wave.  
 
In 1923, de Broglie postulated that since light has a dual particle -wave nature, then 
perhaps all forms of matter can exhibit particle and wave behaviour.    
 
From relativity theory,  
 
The energy of a particle with zero rest mass, eg a photon, is given by  E = pc  
 
We also know that E = hf 
 
By combining these two equations: p = h/λ. 
 
Thus a wave and its particle are related through its momentum. 
 
For a particle p = mv and for a wave p = h/λ 
 
By combining these two equations:  mv = h/λ  
 

Therefore, the de Broglie wavelength of the particle is:      λ = 
p

h
                             (7) 

 
where p is the momentum and h is Planck’s constant                
 
In 1927, Davisson and Germer directed a beam of electrons onto the surface of a nickel 
crystal and observed the reflected beam. Expecting to see diffuse reflection from the 
surface, they were surprised to find that the scattered electrons exhibited a series of 
intensity maxima and minima, similar to the pattern observed for X-ray diffraction. 
Shortly afterwards, G.P. Thomson from Aberdeen, passed an electron beam through a 
thin gold foil and obtained a diffraction pattern consisting of a series of concentric 
rings.   Thomson and Davisson were awarded the Nobel Prize in 1937 for providing the 
first demonstration that electrons have wave-like properties as proposed by de Broglie. 
It is interesting to note that J J Thomson, the father of G P Thomson, was awarded the Nobel 
Prize in 1907 for demonstrating the particle nature of electrons. 

 

 
 
 
 



 
 

 

Worked Examples 

 
1. A neutron and an electron have the same speed.  

Which has the longer de Broglie wavelength?  
 
The electron, since the neutron has the larger mass.  
(The mass is in the denominator.) 

 
2. An electron microscope uses electrons of wavelength of 0.01 nm.  
 

What is the required speed of the electrons?  

Using λ = 
p

h
 for electrons and p = mv gives: 

0.04 × 10–9 = (6.63 × 10–34)/9.11 × 10–31 × v) 
 
and 
 
v = 1.8 × 10–7 m s–1 

 
Notice that this wavelength of 0.04 nm is very much smaller than that of blue light. 
Hence the use of electrons in microscopes can improve the resolution.   
 
These ‘dual’ aspects cannot be explained by classical theories. Why should a particle 
have a wave aspect? How does a particle ‘decide’ when to be a particle and when to be 
a wave? 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Quantum Mechanics 

 
Matter was thought to be ‘atomistic’ with particles making basic interactions and the properties 
of these particles continually changing smoothly from place to place. Waves moved continuously 
from place to place. 
 
Classical mechanics could not explain the various quantisation rules, those which attempted to 
give some limited agreement between observation and theory. The apparent dual wave-particle 
nature of matter could not be explained. With the introduction of quantum theory classical ideas 
would need to be revised. 
 
There are various forms of quantum mechanics: Heisenberg’s matrix mechanics, Erwin 
Schrödinger’s wave mechanics, Dirac’s relativistic field theory and Feynman’s sum over histories 
or amplitude mechanics. 
 
At this stage you don’t need to be able to work with any of these, however, you are expected to 
realise that in essence quantum mechanics provides us with the means to calculate probabilities 
for physical quantities. Exact physical quantities, e.g. position or velocity, do not have unique 
values at each and every instant. 
 
“Balls in quantum mechanics do not behave like balls in classical mechanics… an electron 
between release and detection does not have a definite value for its position. This does not 
mean that the electron has a definite position and we don't know it. It means the electron just 
does not have a position just as love does not have a colour.” Strange World of Quantum 
Mechanics, D Styer 
 
Quantum theories incorporate the following concepts: 
 
(i) Transitions between stationary states are discrete. There is no meaning to any comment on a 
system in an intermediate state. 
 
(ii)Depending on the experiment, particles may behave as waves or a wave as a particle. 
However, in a certain respect they act like both together. It is just not a sensible question in 
quantum mechanics to ask if matter is a wave or a particle. 
 
(iii) Every physical situation can be characterised by a wave function (or other mathematical 
formalism). This wave function is not directly related to any actual property of the system but is 
a description of the potentialities or possibilities within that situation. The wave function 
provides a statistical ensemble of similar observations carried out under the specified conditions. 
It does not give the detail of what will happen in any particular individual observation. The 
probability of a specific observation is obtained from the square of the wave function. This is an 
important and non-intuitive idea. 
 
The quantum probability aspect is very different from classical physics, where we consider there 
is an actual state and any ‘probability’ comes from our inadequate measuring or statistical 
average. 
 



 
 

 
In the quantum domain we can only calculate probabilities. For example, we cannot state when a 
particular nucleus will decay (although we can measure a half-life, based on group properties as 
opposed to individual nuclei) but we could calculate the probability of a particular nucleus 
decaying within a given time period. This is typical of the rules of quantum mechanics – the 
ability to calculate probabilities but not make specific, definite, predictions. 
 
Quantum mechanics has enjoyed unprecedented practical success. Theoretical calculations 
agree with experimental observations to very high precision. Quantum mechanics also reminds 
us that there is discreteness in nature and there are only probabilities. 
 
Double-slit experiment 
 
The double-slit experiment with light shows an interference pattern. This is a standard 
experiment to demonstrate that light demonstrates wave-like properties. 
 
There is a central maximum on the central axis opposite the two slits as shown below. 
 
 

 
 

In more recent years this experiment has been performed with single photons (suggesting a 
particle-like behaviour) and a detector screen. Each photon reaches the screen and the usual 
interference pattern is gradually built up. 
 
The question is: “how does a single photon ‘know about’ the slit it does not pass through?” 
 
Let us place a detector near each slit as shown below. In this diagram the detectors are switched 
off and not making any measurements. The pattern seen remains the same. 
 

 
 
 



Let us now switch on detector A. 
 

 
 
We lose the interference effect and simply obtain a pattern for particles passing through two 
slits. We would get the same pattern if we switched on detector B instead of detector A or if we 
switched on both detectors. 
 
It seems that if we ask the question ‘Where is the photon?’ or ‘Which slit does the photon pass 
through?’ and set up an experiment to make a measurement to answer that question, e.g. 
determine which slit the photon passed through, we do observe a ‘particle’ with a position but 
lose the interference effect, we lose the wave-like behaviour. 
 
It appears that the single photon in some way does ‘know about’ both slits. This is one of the 
non-intuitive aspects of quantum mechanics, which new begins to suggest that a single particle 
must pass through both slits. 
 
A very similar double-slit experiment can be performed with electrons. Again we can arrange for 
only one electron to ‘pass through’ the slits at any one time. The position of the electrons hitting 
the ‘screen’ agrees with our familiar interference pattern (demonstrating wavelike behaviour). 
However, as soon as we attempt to find out which slit the electron passes through we lose the 
interference effect. For electron interference the spacing of the ‘slits’ must be small. Planes of 
atoms in a crystal can be used to form the slits since electrons have a very small associated 
wavelength, the de Broglie wavelength. 
 
These observations are in agreement with quantum mechanics. We cannot measure the wave 
and particle properties at the same time! 
 
Conclusions 
 
What we find is that we cannot predict the exact path that either an electron or photon will 
follow, and therefore predict where it lands on the screen, in this experiment. 
 
We also find that we cannot make a direct measurement of the particles locations, as this will act 
in itself will interfere with the outcome of the experiment! 
 
What we can do is say what probability the electron or photon has of landing at a particular 
point on the screen. The maxima are areas where there is a high probability of arriving, hence 
many electrons/photons arrive here and we see a bright patch. The minima represent areas of 
low probability, fewer electrons/photons arrive and it is dimmer/dark. The sum of all of these 
probabilities is 1. This ties in with the idea of Feynman’s sum over histories. 



 
 

 
Uncertainty principle 

 
Using the wave theory of quantum mechanics we can produce a wave function describing the 
‘state’ of the system, e.g. an electron. However, we find that it is not possible to determine with 
accuracy all the observables for the system. For example, we can compute the likelihood of 
finding an electron at a certain position, e.g. in a box. The position wave function may then be 
effectively zero everywhere else and the uncertainty in its position may be very small inside the 
box. If we then consider its momentum wave function we discover that this is very spread out, 
and there is nothing we can do about it. This implies that in principle, if we ‘know’ the position, 
the momentum has a very large uncertainty. If we reverse the situation we find that the opposite 
is also true, if we are more certain about the momentum of the particle we are less certain about 
its position! 
 
Consider a wave with a single frequency. Its position can be 
thought of as anywhere along the wave but its frequency is 
uniquely specified. 
 
Now consider a wave composed of a mixture of slightly different 
frequencies, which when added together produces a small ‘wave 
packet’. The position of this wave can be quite specific but its 
frequency is conversely non-unique. 
 
Heisenberg’s Uncertainty Principle should more appropriately be called Heisenberg’s 
Indeterminacy Principle since we can measure either x or px with very low ‘uncertainty’ but we 
cannot measure both. If one is certain, the other is indeterminate.  
 
Theoretical considerations also shows that the energy E and time t have this dual indeterminacy. 
 
A thought experiment to illustrate Heisenberg’s Uncertainty Principle 
 
In classical physics it is assumed that all the attributes, such as position, momentum, 
energy etc, could be measured with a precision limited only by the experiment. 
 
In the atomic domain is this still true? 
 
Let us consider an accurate method to determine the position of an electron in a 
particular direction, for example in the x direction. The simplest method is to use a 
‘light gate’, namely to allow a beam of electromagnetic radiation to hit the electron and 
be interrupted in its path to a detector. To increase the accuracy we can use radiation of 
a small wavelength, e.g. gamma rays. However, we note that by hitting the electron 
with the gamma rays the velocity of the electron will alter (a photon-electron collision). 
Now the velocity or momentum of the electron in the x direction will have changed. 
Whatever experiment we use to subsequently measure the velocity or momentum 
cannot determine the velocity before the electron was ‘hit’. To reduce the effect of the 
‘hit’ we can decrease the frequency of the radiation, and lose some of the precision in 
the electron’s position. We just cannot ‘win’! 



 
Heisenberg’s Uncertainty Principle is stated as 
 

4

h
px x   

 
where Δx is the uncertainty in the position, Δpx is the uncertainty in the component of the 
momentum in the x direction and h is Planck’s constant. 
 
Quantum mechanics also shows that there are other pairs of quantities that have this 
indeterminacy, for example energy and time: 
 

4

h
tE   

 
where ΔE is the uncertainty in energy and Δt is the uncertainty in time. 
 
We notice that the pairs of quantities in these relationships, termed “conjugate variables”, have 
units that are the same as those of h, namely J s. For energy and time this is obvious. For position 
and momentum we have: 
 

m kg m s-1 → (multiply by s and s-1) → (kg m2s-2) s → J s 
 
The question ‘Does the electron have a position and momentum before we look for it?’ can be 
debated. Physicists do not have a definitive answer and it depends on the interpretation of 
quantum mechanics that one adopts. However, this is not a useful question since it is the wave 
functions that give us our information and there is a limit on what we can predict about the 
quantum state. We just have to accept this. It is worth reiterating that quantum mechanics does 
give superb agreement with experimental observations. 
 
Using quantum mechanics the spectral lines for helium and other elements can be calculated 
and give excellent agreement with experimental observations. 
 
More importantly, quantum mechanics provides a justification for the previously ad hoc 
quantisation ‘rules’ introduced earlier and gives us a very useful tool to explain observed 
phenomena through theory and make quantitative and accurate predictions about the outcomes 
of experiments. 
 
 
 
 
 
 
 
 
 
 
 



 
 

 
Potential Wells and Quantum Tunnelling 

 
Imagine a ball in a ‘dip’. The exact shapes of the ups and downs is not particularly relevant.  
 
 
 
 
 
 
 
 
The ball cannot escape the well and get to position Y unless it receives energy E = mgh. 
 
The ball can be said to be in a ‘potential well’ of ‘height’ mgh. This means that the ball needs 
energy E equal to or greater than mgh in order to ‘escape’ and get to position Y. 
 
In the quantum world things are a little different, although the concept of a ‘potential well’ or 
‘potential barrier’ is useful. 
 
Now let us consider an electron with some energy E on the left 
hand side of a potential energy barrier of magnitude greater than E. 
The electron is thus confined to side A. It does not have enough 
energy to ‘get over’ the barrier and ‘escape’. 
 
Quantum theory disagrees with this classical prediction. 
 
The wave function for the electron is continuous across a barrier. The amplitude is greater in 
region A but it is still finite, although much smaller, outside region A (to the right of the barrier).  
The probability of finding the electron in region A is very high, but there is in fact a finite 
probability of finding the electron beyond the barrier. 
 

 
 
The probability depends on the square of the amplitude. Hence it appears that the electron can 
‘tunnel out’. This is called quantum tunnelling and has some interesting consequences and 
possible applications. 
 
 
 



 
Examples of Quantum Tunnelling 

 
Alpha Decay 
 
For some radioactive elements, e.g. polonium 212, the alpha particles are held in the nucleus by 
the residual strong force and do not have enough energy to escape. However, the quantum 
tunnelling effect means that they can escape and quantum mechanics can be used to calculate 
the half-life. In 1928 George Gamow used quantum mechanics (namely Schrödinger’s wave 
equation) and the idea of quantum tunnelling to obtain a relationship between the half-life of 
the alpha decay and the energy of emission. Classically the alpha particle should not be able to 
escape. 
 
Scanning Tunnelling Microscope 
A particular type of electron microscope, the scanning tunnelling microscope, has a small stylus 
that scans the surface of the specimen. The distance of the stylus from the surface is only about 
the diameter of an atom. Electrons ‘tunnel’ across the sample. In this way the profile of the 
sample can be determined. Heinrich Rohrer and Gerd Binnig were awarded the Nobel Prize for 
their work in this field in 1986. 
 
Virtual Particles 
Another interesting effect of the Uncertainty Principle is the ‘sea’ of virtual particles in a vacuum. 
We might expect a vacuum to be ‘empty’. Not so with quantum theory.  
 
A particle can ‘appear’ with an energy ΔE for a time less than Δt where 
 

4

h
tE   

 
Do these virtual particles ‘exist’? This is not really a sensible question for quantum mechanics. 
We cannot observe them in the short time of their existence. However, they are important as 
‘intermediate’ particles in nuclear decays and high energy particle collisions and if they are 
omitted theoretical agreement with practical observations may not be obtained. Virtual particles 
are important when using Feynman diagrams to solve problems. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

PARTICLES FROM SPACE 
 
 

Cosmic Rays 
 

In the early 1900s, radiation was detected using an electroscope. However, radiation was still 
detected in the absence of known sources. This was described as background radiation, which 
exists due to the sources that surround us in everyday life. 
 
Austrian physicist Victor Hess made measurements of radiation at high altitudes from a balloon, 
to try and get away from possible sources on Earth. He was surprised to find the measurements 
actually increased with altitude. At an altitude of 5000 m the intensity of radiation was found to 
be five times that at ground level. 
 
Hess named this phenomenon cosmic radiation (later to be known as cosmic rays). 
 
It was thought this radiation was coming from the Sun, but Hess obtained the same results after 
repeating his experiments during a nearly complete solar eclipse (12 April 1912), thus ruling out 
the Sun as the (main) source of this cosmic radiation. In 1936 Hess was awarded the Noble Prize 
for Physics for the discovery of cosmic rays. 
 
Tracks produced by cosmic rays can be observed using a cloud chamber. Charles T R Wilson is the 
only Scot ever to be awarded the Nobel Prize for Physics. He was awarded it in 1927 for the 
invention of the cloud chamber. 
 
Robert Millikan coined the phrase ‘cosmic rays’, believing them to be electromagnetic in nature. 
 
By measuring the intensity of cosmic rays at different latitudes (they were found to be more 
intense in Panama than in California), Compton showed that they were being deflected by the 
Earth’s magnetic field and so must consist of electrically charged particles, i.e. electrons or 
protons rather than photons in the form of gamma radiation. 

 
Origin and composition 
 
The term cosmic ray is not precisely defined, but a generally accepted description is ‘high energy 
particles arriving at the Earth which have originated elsewhere’. 
 
Composition 
 
Cosmic rays come in a whole variety of types, but the most common are protons, followed by 
helium nuclei. There is also a range of other nuclei as well as individual electrons and gamma 
radiation. 

 
 
 
 



 
 
 

Nature Approximate % of all cosmic rays 

Protons 89 

Alpha particles 9 

Carbon, nitrogen and oxygen nuclei 1 

Electrons < 1 

Gamma radiation < 0.1 

 
 
The energies of cosmic rays cover an enormous range, with the most energetic having energies 
much greater than those capable of being produced in current particle accelerators. 
 
The highest energies produced in modern particle accelerators, including the Large Hadron 
Collider, are of the order of 1 tera electronvolt (1012 eV). Cosmic rays have been observed with 
energies ranging from 109 to 1020 eV. Those with energies above 1018 eV are referred to as 
Ultra High Energy Cosmic Rays (UHECRs). 
 
The ‘Oh-my-God’ (OMG) particle with energy of 3 × 1020 eV was recorded in Utah in 1991. 
 
Converting to joules (J), 3 × 1020 eV = 3 × 1020 × 1.6 × 10–19 J = 48 J, i.e. ~ 50 J. 
 
That is enough energy to throw a throw a 2.5 kg mass (e.g. a bag of potatoes) 2 m vertically 
upwards. It is also approximately equal to the kinetic energy of a tennis ball served at about 90 
mph (40 m s-1). 
 
Order of magnitude open-ended question opportunity here: 
 

mass = 60 g = 0.06 kg 
speed = 40 m s–1, 
kinetic energy = 0.5 × 0.06 × 40 × 40 = 48 J 

 
The OMG particle was probably a proton and as such had about 40 million times the energy of 
the most energetic protons ever produced in an Earth-based particle accelerator. 
 
Such UHECRs are thought to originate from fairly local (in cosmological terms) distances, i.e. 
within a few hundred million light years. Were they to originate from further away it would be 
hard to understand how they get all the way here at all, since the chances are they would have 
interacted with Cosmic Microwave Background Radiation (CMBR) photons along the way, 
producing pions. 

 
 
 
 



 
 

 
 
Origin 
 
The lowest energy cosmic rays come from the Sun and the intermediate energy ones are 
presumed to be created elsewhere within the Milky Way, often in connection with supernovae. 
The main astrophysics (rather than particle physics) to come from the study of cosmic rays 
concerns supernovae since they are believed to be the main source of cosmic rays. 
 
However, the origin of the highest energy cosmic rays is still uncertain. Active galactic nuclei 
(AGN) are thought to be the most likely origin for UHECRs. The compact galactic centres are 
associated with a much greater than expected luminosity over a large proportion of the 
electromagnetic spectrum. This is thought to be due to the accretion of matter by a 
supermassive black hole at the centre of that galaxy. A group of cosmologists (including Martin 
Hendry from the University of Glasgow) are working on the statistical analysis of apparent 
associations between the incoming direction of the highest energy cosmic rays and active 
galaxies. 

 
Interaction with the Earth’s Atmosphere 
 
When cosmic rays reach the Earth, they interact with particles in the Earth’s atmosphere, 
producing a chain of reactions resulting in the production of a large number of particles known 
as a cosmic air shower shown below. Air showers were first discovered by the French scientist 
Pierre Auger in 1938. Analysing these showers allows the initial composition and energies of the 
original (primary) cosmic rays to be deduced. 
 
When cosmic rays from space (the primary cosmic rays) strike particles in the atmosphere they 
produce secondary particles, which go on to produce more collisions and particles, resulting in a 
shower of particles that is detected at ground level as shown in Figure 3 below. The primary 
cosmic rays can usually only be detected directly in space, for example by detectors on satellites, 
although very high energy cosmic rays, which occur on rare occasions, can penetrate directly to 
ground level without making interactions. 
 
Detection 
 
Consequently there are two forms of detector: those that detect the air showers at ground level 
and those located above the atmosphere that detect primary cosmic rays. 
 
Cherenkov radiation 
 
Air shower particles can travel at relativistic speeds. Although relativity requires that nothing can 
travel faster than the speed of light in a vacuum, particles may exceed the speed of light in a 
particular medium, for example water. Such particles then emit a beam of Cherenkov radiation – 
the radiation that causes the characteristic blue colour in nuclear reactors. (This is a bit like the 
optical equivalent of a sonic boom.) 
 
 



 
 

 
 

Figure 3: Secondary particles induced by cosmic rays entering the Earth’s atmosphere  
 

Extension task 
 
It may be worthwhile and even fun to investigate the interactions taking place here by referring 
to the Particle Physics section of the Higher Physics course. Can you justify to yourself that each 
interaction is possible, and even why the muon anti-neutrino makes an appearance in one 
instance but not in another? The primary interaction involves an initial proton leading to 3 pions 
and a neutron, in terms of quarks can you justify this? 

 
Atmospheric fluorescence 
 
When charged particles pass close to atoms in the atmosphere, they may temporarily excite 
electrons to higher energy levels. The photons emitted when the electrons return to their 
previous energy levels can then be detected. 
 
The Pierre Auger observatory in Argentina was set up to study high-energy cosmic rays. It began 
operating in 2003 and at that time was the largest physics experiment in the world. It is spread 
over several thousand square miles and uses two basic types of detectors: 
 

• 1600 water tanks to detect the Cherenkov effect 
• four detectors of atmospheric fluorescence. 

 
 
 
 
 
 



 
 

 
 

The Solar Wind and Magnetosphere 
 
Structure of the Sun 
 
The interior of the Sun consists of three main regions: 
 

1. the core, within which nuclear fusion takes place 
2. the radiative zone, through which energy is transported by photons 
3. the convective zone, where energy is transported by convection. 

 
The extended and complex solar atmosphere begins at the top of the convective zone, with the 
photosphere. 
 
The photosphere is the visible surface of the Sun and appears smooth and featureless, marked 
by occasional relatively dark spots, called sunspots. 
 
Moving outwards, next is the chromosphere. Sharp spicules and prominences emerge from the 
top of the chromosphere. 
 
The corona (from the Greek for crown) extends from the top of the chromosphere. The corona is 
not visible from Earth during the day because of the glare of scattered light from the brilliant 
photosphere, but its outermost parts are visible during a total solar eclipse. 
 
The depth of each layer relative to the radius of the Sun (RS) is shown. The photosphere is about 
330 km deep (0.0005Rs) and the chromosphere is about 2000 km (0.003Rs) deep. 
 

 

 

 
Figure 4:  The structure of the sun 



 
Coronagraphs are special telescopes that block out the light from the photosphere to allow the 
corona to be studied. These are generally used from mountain tops (where the air is thin) and 
from satellites. They have been able to detect the corona out beyond 20RS, which is more than 
10% of the way to Earth. 
 
The corona is permeated by magnetic fields. In particular there are visible loops along which 
glowing ionised gaseous material can be seen to travel. They have the shape of magnetic field 
lines and begin and end on the photosphere. 
 
Information about magnetic fields in the corona has come from the study of emitted X-rays, 
obtained from satellites and space stations. The corona is the source of most of the Sun’s X-rays 
because of its high temperature, which means it radiates strongly at X-ray wavelengths. The 
corona’s X-ray emission is not even, however, with bright patches and dark patches. The dark 
areas hardly emit any X-rays at all and are called coronal holes. 
 
The Solar and Heliospheric Observatory (SOHO) is a project of international collaboration 
between the European Space Agency (ESA) and the National Aeronautics and Space 
Administration (NASA) to study the Sun from its deep core to the outer corona and the solar 
wind. 
 
In 2006 a rocket was launched from Cape Canaveral carrying two nearly identical spacecraft. 
Each satellite was one half of a mission called Solar TErrestrial Relations Observatory (STEREO) 
and they were destined to do something never done before – observe the whole of the Sun 
simultaneously. With this new pair of viewpoints, scientists are able to see the structure and 
evolution of solar storms as they blast from the Sun and move out through space. 
 
The Solar Wind 
 
There is a continual flow of charged particles emanating from the Sun because of the high 
temperature of the corona. This gives particles sufficient kinetic energy to escape from the Sun’s 
gravitational influence. This flow is called the solar wind and is a plasma composed of 
approximately equal numbers of protons and electrons (i.e. ionized hydrogen). It can be thought 
of as an extension of the corona itself and as such reflects its composition. The solar wind also 
contains about 8% alpha particles (i.e. helium nuclei) and trace amounts of heavy ions and nuclei 
(C, N, O, Ne, Mg, Si, S and Fe). The solar wind travels at speeds of between 300 and 800 kms–1, 
with gusts recorded as high as 1,000 km s–1 (2.2 million miles per hour). 
 
Comet Tails 
 
Although it was known that solar eruptions ejected material that could reach the Earth, no-one 
suspected that the Sun was continually losing material regardless of its apparent activity. It had 
been known for a long time that comet tails always pointed away from the Sun, although the 
reason was unknown. Ludwig Biermann (of the Max Planck Institute for Physics in Göttingen) 
made a close study of the comet Whipple-Fetke, which appeared in 1942. It had been noted that 
comet tails did not point directly away from the Sun. Biermann realised this could be explained if 
the comet was moving in a flow of gas streaming away from the Sun. The comet’s tail was acting 
like a wind-sock. 



 
 

 
 
In the early 1950s Biermann concluded that even when the Sun was quiet, with no eruptions or 
sunspots, there was still a continuous flow of gas from it. In 1959, the Russian space probe Luna 
1 made the first direct observation and measurement of the solar wind. The probe carried 
different sets of scientific devices for studying interplanetary space, including a magnetometer, 
Geiger counter, scintillation counter and micrometeorite detector. It was the first man-made 
object to reach escape velocity from Earth, meaning it achieved a heliocentric orbit (orbit of the 
Sun rather than the Earth!). 
 
Coronal Holes 
 
Unlike most magnetic field lines in the corona, the magnetic field lines from coronal holes don’t 
loop back onto the surface of the corona. Instead they project out into space like broken rubber 
bands, allowing charged particles to spiral along them and escape from the Sun. There is a 
marked increase in the solar wind when a coronal hole faces the Earth. 
 
Solar Flares 
 
Solar flares are explosive releases of energy that radiate over virtually the entire electromagnetic 
spectrum, from gamma rays to long wavelength radio waves. They also emit high-energy 
particles called solar cosmic rays. These are composed of protons, electrons and atomic nuclei 
that have been accelerated to high energies in the flares. 
 
Protons (hydrogen nuclei) are the most abundant particles followed by alpha particles (helium 
nuclei). The electrons lose much of their energy in exciting radio bursts in the corona. Solar flares 
generally occur near sunspots, which leads to the suggestion they are magnetic phenomena. It is 
thought that magnetic field lines become so distorted and twisted that they suddenly snap like 
rubber bands. This releases a huge amount of energy, which can heat nearby plasma to 100 
million kelvin in a few minutes or hours. This generates X-rays and can accelerate some charged 
particles to very high, even relativistic, velocities. 
 
The energies of solar cosmic ray particles range from milli electronvolts (10–3 eV) to tens of giga 
electronvolts (1010 eV). 
 
The highest energy particles arrive at the Earth within half an hour of the flare maximum, 
followed by the peak number of particles, approximately 1 hour later. 
 
Particles streaming from the Sun due to solar flares or other major solar events can disrupt 
communications and power delivery on Earth. 
 
A major solar flare in 1989: 

•  caused the US Air Force to temporarily lose communication with over 2000 satellites 
•  induced currents in underground circuits of the Quebec hydroelectric system, causing it 

to be shut down for more than 8 hours. 
 
 



 

 

The Solar Cycle 
 
All solar activities show a cyclic variation with a period of about 11 years.   The three main 
features of the solar cycle are: 
 

1. the number of sunspots 
2. the mean latitude of sunspots 
3. the magnetic polarity pattern of sunspot groups. 
 

The number of sunspots increases and decreases with an 11-year cycle, the mean solar latitude 
at which the sunspots appear progresses towards the solar equator as the cycle advances and 
the magnetic polarity pattern of sunspot groups reverses around the end of each 11-year cycle 
(making the full cycle in effect 22 years). 
 

Sunspots 
 
When an image of the sun is focussed on a screen dark spots are often visible, these are called 
sunspots. Over a number of days they will be seen to move across the surface (due to the 
rotation of the Sun) and also change in size, growing or shrinking. The sunspots look dark 
because they are cooler than the surrounding photosphere. A large group of sunspots is called 
an active region and may contain up to 100 sunspots. 
 
Individual sunspots may appear and disappear – short-lived ones only lasting a few hours 
whereas others may last for several months. The general pattern of the movement of sunspots 
shows that the Sun is rotating with an average period of about 27 days with its axis of rotation 
tilted slightly to the plane of Earth’s orbit. 
 
Unlike the Earth, the Sun does not have a single rotation period, since it is not a solid sphere. The 
period is 25 days at the Sun’s equator and lengthens to 36 days near the poles. Sections at 
different latitudes rotate at different rates, this is called differential rotation. 
 

The Magnetosphere 
 
The magnetosphere is the part of the Earth’s atmosphere dominated by the Earth’s magnetic 
field. This region also contains a diffuse plasma of protons and electrons. The magnetic field 
resembles that of a bar magnet, tipped at about 11° to the Earth’s rotational axis. However, the 
magnetic field is believed to be generated by the motion of conducting material, namely iron, in 
the Earths outer core, like a giant dynamo. 
 
Geological evidence shows that the direction of the Earth’s magnetic field has reversed on 
several occasions, the most recent being about 30,000 years ago. This lends evidence for the 
‘dynamo’ model as the reversal can be explained in terms of changes in the flow of conducting 
fluids inside the Earth. 
 

 

 



 
 

 

 

Interaction of the solar wind with the Earth’s magnetic field 
 
The solar wind interacts with the magnetosphere and distorts its pattern from the simple bar 
magnet model outlined above. The Earth’s magnetic field also protects it from the solar wind, 
deflecting it a bit like a rock deflecting the flow of water in a river. The boundary where the solar 
wind is first deflected is called the bow shock. The cavity dominated by the Earth’s magnetic field 
is the magnetosphere. 
 

 

 
 

 

Figure 5:   Interaction of the solar wind with the Earth’s magnetic field: 

 

 

High-energy particles from the solar wind that leak into the magnetosphere and become trapped 
form the Van Allen belts of radiation. These are toroidal in shape and concentric with the Earth’s 
magnetic axis. There are two such belts: the inner and the outer. 
 
The inner Van Allen belt lies between one and two Earth radii from its axis, (RE< inner belt < 2RE) 
then there is a distinct gap followed by the outer belt lying between three and four Earth radii 
(3RE < outer belt < 4RE). The inner belt traps protons with energies of between 10 and 50 MeV 
and electrons with energies greater than 30 MeV. The outer belt contains fewer energetic 
protons and electrons. 
 
The charged particles trapped in the belts spiral along magnetic field lines and oscillate back and 
forth between the northern and southern mirror points with periods between 0.1 and 3 seconds 
as shown. 
 

Particles in the inner belt may interact with the thin upper atmosphere to produce the aurorae. 
These result from the excitation of different atoms in the atmosphere, each of which produces 
light with a characteristic colour due to the different energies associated with these transitions. 



 

 

 

 

 

 
 

 
Charged particles in a magnetic field 
 
The force acting on a charge q, moving with velocity v through a magnetic field B is given by: 
 
                                                                            F = qvB                                                                                (8) 
 
where F, v and B are all mutually at right angles to each other. 
 
Circular motion 
 
As F is always at right angles to v, the particle will move with uniform motion in a circle, where F 
is the central force (assuming any other forces are negligible), so: 
 

                                                                          
r

mv
F

2

                                                                              (9) 

 
Equating the magnetic force to the central force we get: 
 

                                                                     qvB
r

mv
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2

                                                                             (10) 

so 
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Helical motion 
 
If a charged particle crosses the magnetic field lines at an angle, then its velocity can be resolved 
into two orthogonal components: one perpendicular to the field and the other parallel to it. 
 
The perpendicular component provides the central force, which produces uniform circular 
motion as described above. The component parallel to the magnetic field does not cause the 
charge to experience a magnetic force so it continues to move with constant velocity in that 
direction, resulting in a helical path. 
 
Aurorae 
 
The aurora (aurora borealis in the Northern hemisphere – the northern lights; aurora australis in 
the Southern hemisphere – southern lights) are caused by solar wind particles which penetrate 
the Earth’s upper atmosphere, usually within 20° of the north or south poles. Between 80 and 
300 km above the Earth’s surface (aircraft fly at around 10 km altitude) these particles strike 
nitrogen molecules and oxygen atoms, causing their electrons to be excited into higher energy 
levels and subsequently emit light when the electrons drop back to their previous energy levels. 
The most common colours, red and green, come from atomic oxygen, and violets come from 
molecular nitrogen. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2.2 Waves 
 

SIMPLE HARMONIC MOTION 
 

Dynamics of simple harmonic motion 
 

If an object is subject to a linear restoring force, it performs an oscillatory motion termed ‘simple 
harmonic’. Before a system can perform oscillations it must have (1) a means of storing potential 
energy and (2) some mass which allows it to possess kinetic energy. In the oscillating process, 
energy is continuously transformed between potential and kinetic energy. 
 

 
Example and Diagram EP stored as: EK possessed by moving: 

 
Mass on a coil spring 

 

 
Elastic energy of spring 

 
Mass on spring 

 
Simple pendulum 

 

 

 
Gravitational potential                

energy of bob 

 
Mass of bob 

 
Trolley tethered between two springs 

 

 

 
Elastic energy of the springs 

 

 
Mass of trolley 

 
Weighted tube floating in a liquid 

 

 

 
Gravitational potential 

energy of the tube 

 
Mass of the tube 

 



 
 

 
 

Note that for the mass oscillating on the spring, there is always an unbalanced force acting on 
the mass and this force is always opposite to the direction of its displacement. The unbalanced 
force is momentarily zero as the mass passes through the central position, at which it would be 
at rest had no initial change been made to its state. This is known as the rest position. 
 
To see this, consider the following: when the mass is moving upwards beyond the rest when 
moving downwards past the rest position, the spring force (upwards) is greater than the 
gravitational force downwards. 
 
This situation is common to all SHMs. The force which keeps the motion going is therefore called 
the restoring force. 

 
Note: any motion which is periodic and complex (i.e. not simple!) can be analysed into its simple 
harmonic components (Fourier Analysis). An example of a complex waveform may be a sound 
wave from a musical instrument. 

 
Definition of Simple Harmonic Motion 
 
When an object is displaced from its equilibrium or rest position, and the unbalanced force is 
proportional to the displacement of the object and acts in the opposite direction, the motion is 
said to be simple harmonic. 
 
Graph of Force against displacement for SHM 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
F = - kx                                                                                    (1) 

 
Where F is the restoring force (N) 

                     k is the force constant (N m-1) 
                    x is the displacement (m) 
 

The negative sign shows the direction of vector F is always opposite to vector x. 



 
If we apply Newton’s Second Law in this situation the following alternative definition in terms of 
acceleration, as opposed to force, is produced. 
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Remember that k is a force constant which relates to the oscillating system. 
 

The constant, 
m

k
. is related to the period of the motion by 

m

k
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T
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This analysis could equally well have been done using the y co-ordinate. 
 
Thus an equivalent set of expressions are: 
 

yw
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Kinematics of SHM 
 
Object P is oscillating with SHM between two fixed points R and S. The amplitude of the 
oscillation is described as half the distance RS, therefore ½ RS and this is given the symbol A. The 
displacement y is the vector OP. 

 
 
O is the origin, position of zero displacement 

 
 
P is the instantaneous position at displacement y 

 
 
Upwards is considered the positive direction. 

 
 

The period, T, of the motion is the time taken to complete one full oscillation,                              
e.g. path   O → R → O → S → O. 
 
The frequency, f, is the number of oscillations in one second. 
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Solutions of Equation for SHM 
 

The equation yw
dt

yd 2

2

2

  could be solved using integration to obtain equations for                    

velocity, v, and displacement, y, of the particle at a particular time, t.  
 
However, the calculus involves integration which is not straightforward. We will therefore start 
with the solutions and use differentiation. 
 
The possible solutions for the displacement, y, at time, t, depend on the initial 
conditions and are given by: 

 
 

Displacement                                      y = 0 at t = 0 
 

tAy sin  

Displacement                                    y = A at t = 0 
 

tAy cos  

 

Velocity 
 

 tA
dt

d

dt

dy
v sin  

 

tAv cos  

Velocity 
 

 tA
dt

d

dt

dy
v cos  

 

tAv sin  

Acceleration 
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A
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Acceleration  
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Linking SHM with Circular Motion 

 
This allows us to examine the mathematics of the motion and is provided for interest. 
If the point Q is moving with constant linear speed, v, in a circle, its projection point P on the             
y axis will have displacement y = A cos θ 

 
 

Positive direction of y is upwards 

note that 
OQ

QP
sin  

A

yA 22

sin


  

 
                      Viewed from the side this motion will 

  appear identical to the one dimensional 
 motion described on the previous page 

 
 

The velocity of point P is:  cosA
dt

d

dt

dy
VP    and  t   

 

     tAVP  sin    (negative sign: P moving down) 

 

Special cases: When 0y , 
2


     and   1sin   

    Av    occurs as P goes through the origin in either direction.                                                                      

    When Ay  , 0 or  and  0sin   

    0min v   occurs as P reaches the extremities of the motion.       

 

The acceleration of point P is:  tA
dt

d

dt

dv

dt
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      tAaP  cos2  

                                                                            

Special cases:  When 0y , 
2


     and   0cos   

                                      0min a  occurs as P goes through the origin in either direction.                                                                      

 

When Ay  , 0 or  and  1cos   

                                      2

max Aa   occurs as P reaches the extremities of the motion.       

 
Note: the acceleration is negative when the displacement, y, is positive and vice versa;                     
i.e. they are out of phase, see graphs of motion which follow. Knowledge of the positions where 
the particle has maximum and minimum acceleration and velocity is required 



 
 

 
To understand these graphs it is helpful if you see such graphs being generated using a motion 
sensor. In particular, pay close attention to the phases of the graphs of the motion and note that 
the basic shape is that of the sine/cosine graphs. 
 

Graphs of displacement, velocity and acceleration Summary of equations 
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tAa  cos2  
ywa 2  

 
 
 

 
 
Note that this form, acceleration = - ω2 y, is consistent with our definition of SHM, ω2 is a positive 
constant. This implies that the sine and cosine equations must be solutions of the motion. 
 
Compare this constantly changing acceleration with a situation where only uniform acceleration 
was considered. 
 
The equation used in a particular situation depends on the initial conditions. 
 

Thus:  if y = 0 at time t = 0 use y = A sinωt 
 

                           if y = a at time t = 0 use y = A cosωt  
 

Another possible solution for SHM is: y = A sin (ωt + ϕ) where ϕ is known as the phase angle. 



 
Worked Example 
 
An object is vibrating with simple harmonic motion of amplitude 0.02 m and frequency 5.0 Hz. 
Assume that the displacement of the object, y = 0 at time, t = 0 and that it starts moving in the 
positive y-direction. 
 
(a)  Calculate the maximum values of velocity and acceleration of the object. 
 
(b)  Calculate the velocity and acceleration of the object when the displacement is 0.008 m. 
 
(c)  Find the time taken for the object to move from the equilibrium position to a displacement 

of 0.012 m. 
 
Solution 
 

Initial conditions require: tAy sin  ;  tAv  cos ;  yacc 2  

      HzF 5  ;  14.312  radsfw   

 

(a)    1

max 63.002.04.31  msAv   
222
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(b)  22 yAwv  = 122 58.0008.002.04.31  ms  

yacc 2 22 9.7008.04.31  ms  

 
(c)  tAy sin    

 
When my 012.0    then   t4.31sin02.0012.0   
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012.0
4.31sin t  

 
 Now   644.04.31 t  
 

 Therefore   st 0205.0
4.31

644.0
  

 
 Thus   st 0205.0  (remember that the angles are in radians) 

 
 
 
 
 
 
 
 



 
 

 
Proof that the Motion of a Simple Pendulum approximates to SHM 
 
The sketches below show a simple pendulum comprising a point mass, m, at the end of an 
inextensible string of length, L. The string has negligible mass. 
 

 
 
The restoring force F on the bob is F = - mg sinθ 
 

If the angle θ is small (less than about 10°) then sin θ = θ in radians and 
L

X
  

 

Then  
L

X
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X
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The restoring force therefore satisfies the conditions for SHM for small displacements. 
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Energy Equations for SHM 

 
Consider a particle moving with simple harmonic motion. 
 

The particle has maximum amplitude A and period 


2
T  

 

Kinetic energy equation for the particle 
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Potential energy equation for the particle 
 
When at position O the potential energy is zero, (with reference to the equilibrium position) and 
the kinetic energy is a maximum. 
 

The kinetic energy is a maximum when y = 0:  22
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The total energy E is the same at all points in the motion. 
 

Thus for any point on the swing: as above pktot EEE   
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The graph below shows the relation between potential energy, Ep, kinetic energy Ek, and the 
total energy of a particle during SHM as amplitude y changes from - A to + A. 
 

 

 
 

Example on energy and SHM 
 
The graph below shows how the potential energy, Ep, of an object undergoing SHM, varies with 
its displacement, y. The object has mass 0.40 kg and a maximum amplitude of 0.05 m. 
 

 
 

(a)  (i)  Find the potential energy of the object when it has a displacement of 0.02 m. 
(ii)  Calculate the force constant, k for the oscillating system (k has unit N m-1). 

 
(b) Find the amplitude at which the potential energy equals the kinetic energy. 
 
Solution 

(a)  (i)  From graph  JE p 10.0  

 (ii) 2
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Damping oscillations 

 
Oscillating systems, a mass on a spring, a simple pendulum, a bobbing mass in water, all come to 
rest eventually. We say that their motion is damped.  his means that the amplitude of the 
motion decreases to zero because energy is transformed from the system. A simple pendulum 
takes a long time to come to rest because the frictional effect supplied by air resistance is small 
- we say that the pendulum is lightly damped. A tube oscillating in water comes to rest very 
quickly because the friction between the container and the water is much greater - we say that 
the tube is heavily damped. 
 
If the damping of a system is increased there will be a value of the frictional resistance which is 
just sufficient to prevent any oscillation past the rest position - we say the system is critically 
damped. 
 
Systems which have a very large resistance, produce no oscillations and take a long time to 
come to rest are said to be over damped. In some systems over damping could mean that a 
system takes longer to come to rest than if underdamped 
and allowed to oscillate a few times.  
 
An example of damped oscillations is a car shock absorber which has a very thick oil in the 
dampers. When the car goes over a bump, the car does not continue to bounce for long. Ideally 
the system should be critically damped. As the shock absorbers get worn out the bouncing may 
persist for longer. 
 
The graphs below give a graphical representation of these different types of damping. 
 
 

 
   
 
 
 
 
 
 
 
 
 
 
 



 
 

WAVES 
 

Wave Motion 
 
In a wave motion energy is transferred from one position to another with no net transport of 
mass. 
 
Consider a water wave where the movement of each water particle is at right angles (transverse) 
to the direction of travel of the wave. During the wave motion each particle, labelled by its 
position on the x-axis, is displaced some distance y in the transverse direction. In this case, "no 
net transfer of mass" means that the water molecules themselves do not travel with the wave - 
the wave energy passes over the surface of the water, and in the absence of a wind/tide any 
object on the surface will simply bob up and down. 
 

The Travelling Wave Equation 
 

The value of the displacement, y, depends on which particle of the wave is being considered. It is 
dependent on the x value, and also on the time, t, at which it is considered. Therefore y is a 
function of x and t giving y = f (x, t). If this function is known for a particular wave motion we can 
use it to predict the position of any particle at any time. 
 
Below are 3 'snapshots' of a transverse wave, moving left to right, taken at different times 
showing how the displacement of different particles varies with position x: 
 

 
 
 
The following diagram shows the movement of one particle on the wave as a function of time 
 

 
 
 
Initial condition at the origin: y = 0 when t = 0 
 
 
 



 
For a wave travelling from left to right with speed v, the particle will be performing SHM in the  
y-direction. 
 
The equation of motion of the particle will be: 
 

y = A sin ωt  where A is the amplitude of the motion. 
 
The displacement of the particle is simple harmonic. The sine or cosine variation is the simplest 
description of a wave. 
 
When y = 0 at t = 0 the relationship for the wave is y = A sin ωt, as seen above. 
 
When y = A at t = 0 the relationship for the wave is y = A cos ωt. 
 
 
 
 

Deriving the travelling wave equation 
 
Consider a snapshot of the wave as shown below: 
 

 
 
 
Consider particle (i) at position x = 0. The equation of motion of particle (i) is given by  
 

y = A sin ωt,  where t is the time at which the motion of particle (i) is observed. 
 
Now consider particle (ii) at position x = x and the time t = t.   Since wave motion is a repetitive 
motion: 

motion of particle (ii) (x = x, t = t) = motion of particle (i) (x = 0, t = 
v

x
), 

 

i.e. the motion of particle (ii) equals the motion of particle (i) at the earlier time of t = 
v

x
]. 

 

General motion of particle (i) is given by y = A sin ωt, but in this case t = t − 
v

x
 

hence y = A sin ω(t − 
v

x
). 

Motion of particle (ii) (x = x, t = t) is also given by y = A sin ω(t − 
v

x
). 

The time, t, for the wave disturbance 
to travel from (i) (x = 0) to (ii) (x = x) 

is 
v

x
  

. 



 
 

In general:  

y = A sin ω(t - 
v

x
)   also ω = 2πf and v = f λ 

y = A sin 2πf(t - 
f

x
)   which gives 

y =A sin2π(ft - 


x
)          for a wave travelling from left to right in the positive x-direction 

and 

y= A sin2π(ft + 
v

x
) for a wave travelling from right to left in the negative direction. 

 
 
 

The Intensity/Energy of a Wave 
 
The intensity or energy of a wave is directly proportional to the square of its amplitude: 

 
Intensity or Energy α A2 

 

 
 

Longitudinal and transverse waves 
 

With transverse waves, as in water waves, each particle oscillates at right angles to the direction 
of travel of the wave (left diagram). In longitudinal waves, such as sound waves, each particle 
vibrates along the direction of travel of the wave (right diagram): 
  
 

       
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Principle of Superposition of Waveforms 

 
Travelling waves can pass through each other without being altered. If two stones are dropped in 
a calm pool, two sets of circular waves are produced. These waves pass through each other. 
However at any point at a particular time, the disturbance at that point is the algebraic sum of 
the individual disturbances. In this example, when a ‘trough’ from one wave meets a ‘crest’ from 
the other wave (the waves are out of phase at this location) the water will remain calm due to 
an effective cancelling out (known as destructive interference). 
 
A periodic wave is a wave which repeats itself at regular intervals. All periodic waveforms can be 
described by a mathematical series of sine or cosine waves, known as a Fourier Series. For 
example a saw tooth wave can be expressed as a series of individual sine waves. 
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The graph below shows the first four terms of this expression. 

 
 
 
 
 
 
 
 
 
 

 
When all these terms are superimposed (added together) the graph below is obtained. Notice 
that this is tending to the saw tooth waveform. If more terms are included it will have a better 
saw tooth form. 
 

                                               
 
 
 
 
 
 



 
 

 
Phase Difference 

 
A phase difference exists between two points on the same wave.   Consider the snapshots below 
of a wave travelling to the right in the positive x-direction. 
 
 
 
 
 
 
 
 
 
 
 
 
Points 0 and 3 have a phase difference of 2π radians. 
They are both at zero displacement and will next be moving in the negative direction. 
They are separated by one wavelength (λ). 
 
Points 0 and 2 have a phase difference of π radians. 
They both have zero displacement but 2 will next be going positive and 0 will be going negative. 
They are separated by λ/2. Notice that points 1 and 2 have a phase difference of π/2. 
 
The table below summarises phase difference and separation of the points. 
 

Phase Difference Separation of Points 

0 0 

π/2 λ/4 

π λ/2 

2π λ 

 
 
Notice that  
 

If the phase difference between two particles is ϕ when the separation of the particles is x,  

Then   


 2


x
 

In general, for two points on a wave separated by a distance x the phase difference is 

given by: 



x

2   where ϕ is the phase angle in radians. 
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Worked Example 
 
A travelling wave has a wavelength of 60 mm. A point P is 75 mm from the origin and a point Q is 
130 mm from the origin. 
 
(a)  What is the phase difference between P and Q? 
 
(b)  Which of the following statements best describes this phase difference: 

‘almost completely out of phase’ ;  ‘roughly ¼ cycle out of phase’ ;  ‘almost in phase’. 
 
Solution 
 
(a)  Separation of points = 130 - 75 = 55 mm = 0.055 m 
 

Phase difference, radians
x

76.5
060.0

055.0
22  


  

 
(b)  P and Q are separated by 55 mm which is almost one wavelength, hence they are 

‘almost in phase’. Notice that 5.76 radians is 330°, which is close to 360°. 
 
 
 

 
Stationary Waves 

 
A stationary wave is formed by the interference between two waves, of the same frequency and 
amplitude, travelling in opposite directions. For example, this can happen when sound waves are 
reflected from a wall and interfere with the waves approaching the wall. 
 
A stationary wave travels neither to the right nor the left, the wave ‘crests’ remain at fixed 
positions while the particle displacements increase and decrease in unison. 

 
 
 
 
 
 
 

 
There are certain positions which always have zero amplitude independent of the time we 
observe them; these are called nodes. 
 
There are other points of maximum amplitude which are called antinodes. 
 
Note that the distance between each node and the next node is λ/2 and that the distance 
between each antinode and the next antinode is λ/2.  
. 

A = antinodes 

 

N= nodes 

 

 

 

 

 



 
 

 
Use of standing waves to measure wavelength 

 
Standing waves can be used to measure the wavelength of waves. The distance across a number 
of minima is measured and the distance between consecutive nodes determined and the 
wavelength calculated. This method can be used for sound waves or microwaves. 
 

Formula for standing waves 
 

Consider the two waves y1 and y2 travelling in the opposite direction, where 
 













x

ftAy 2sin1    and           











x

ftAy 2sin2  

 

When these two waves meet the resultant displacement y is given by: 
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Notice that the equation is a function of two trigonometric functions, one dependent on time, t, 
and the other on position, x. Consider the part which depends on position. 

We can see that there are certain fixed values of x for which 


x2
cos  is equal to zero. 

These are ,
4
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x etc. This shows that there are certain positions where y = 0 

which are independent of the time we observe them - the nodes. 
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INTERFERENCE – DIVISION OF AMPLITUDE 
 

Producing interference 
 
Interference of waves occurs when waves overlap. There are two ways to produce an 
interference pattern for light: division of amplitude and division of wavefront. Both of these 
involve splitting the light from a single source into two beams. We will consider division of 
amplitude first and division of wavefront later. 
 
Before we consider specific examples of either we need to consider some general 
properties of interference. 
 

Coherent sources 
 
Two coherent sources must have a constant phase difference. Hence they will have the same 
frequency. 
 
To produce an interference pattern for light waves the two, or more, overlapping beams always 
come from the same single source. When we try to produce an interference pattern from two 
separate light sources it does not work because light cannot be produced as a continuous wave.  
 
Light is produced when an electron transition takes place from a higher energy level to a lower 
energy level in an atom. The energy of the photon emitted is given by ΔE = hf where ΔE is the 
difference in the two energy levels, f is the frequency of the photon emitted and h is Planck’s 
constant. Thus a source of light has continual changes of phase, roughly every nanosecond, as 
these short pulses of light are produced. Two sources of light producing the same frequency will 
not have a constant phase relationship so will not produce clear interference effects. 
 
This is not the case for sound waves. We can have two separate loudspeakers, connected to the 
same signal generator, emitting the same frequency which will produce an interference pattern. 
 

Path Difference and Optical Path Difference 
 

Sources S1 and S2 are two coherent sources in air. 
 

 
The path difference is (S2Q - S1Q). For constructive interference to take place at Q, the waves 
must be in phase at Q. Hence the path difference must be a whole number of wavelengths.  
 

(S2Q-S1Q) = mλ,       where m = 0, 1, 2, 3... 
 

(Note: the letter m is used to denote an integer, not n, since we use n for refractive index.) 



 
 

 
Similarly, for destructive interference to take place the waves must be out of phase at 
Q by λ/2 (a ‘crest’ from S1 must meet a ‘trough’ from S2). 
 

(S2Q-S1Q) = (m+1/2)λ,       where m = 0, 1, 2, 3... 
 

 
Optical path difference 

 
In some situations the path followed by one light beam is inside a transparent material of 
refractive index, n. Consider two coherent beams S1 and S2 where S1P is in air and S2P is in 
perspex of refractive index n = 1.5. We will consider the point P itself to be in air. 
 

 
 
The geometrical path difference S1P - S2P is zero. But will there be constructive interference at P? 
 

The wavelength inside the perspex is less than that in air 
5.1

air

Perspex


  .  

Hence the waves from S1 and S2 may not arrive at P in phase. For example, if there were exactly 
Z whole waves between S1P, there will be 1.5 x Z waves between S2P which may or may not be a 
whole number of wavelengths. 
 
The optical path length must be considered not the geometrical path length. 
 
 

Optical path length = refractive index × geometrical path length 
 
 
Thus the relationships for constructive and destructive interference must be considered for 
optical path lengths, S2P and S1P. 

 
For constructive interference (S2P - S1P) = mλ,      where m is an integer 

 
For destructive interference (S2P - S1P) = (m + 1/2)λ,      where m is an integer 

 
 
 
 
 
 
 



 
Phase difference and optical path difference 

 
The optical path difference is the difference in the two optical path lengths, namely (S2P - S1P) in 
our general example. 
 
The phase difference is related to the optical path difference: 
 

phase difference = 


2
× optical path difference           

 
where λ is the wavelength in vacuum. 
 
Notice that when the optical path difference is a whole number of wavelengths, the phase 
difference is a multiple of 2π, i.e. the waves are in phase. 
 

Phase Change on Reflection 
 
To understand interference caused by multiple reflections it is necessary to consider what 
happens when a light wave moving in air hits a material such as glass. On a large scale we can 
see what happens to the wave when a pulse on a rope or 'slinky' reflects off a dense material 
such as a wall.  
 

 
 
The reflected pulse is said to undergo a phase change of 180° or π radians. The reflected pulse is 
180° out of phase with the incident pulse. If these two pulses were to meet they would 
momentarily cancel as they passed one another. 
 
There is a similar phase change when a light wave is reflected off a sheet of glass. 
 
In general for light there is a phase change of π on reflection at an interface where there is an 
increase in optical density, e.g. a higher refractive index such as light going from air to glass. 
There is no phase change on reflection where there is a decrease in optical density, e.g. a lower 
refractive index such as light going from glass to air. 
 

Division of Amplitude 
 
This involves splitting a single light beam into two beams, a reflected beam and a transmitted 
beam, at a surface between two media of different refractive index. In some cases multiple 
reflections can occur and more than two beams are produced. 
 



 
 

 
Thin parallel sided film 

 
Interference by division of amplitude can be produced by thin films as shown below. 
 

 
 
Notice that an extended source can be used. The amplitude of the beam is divided by reflection 
and transmission at D1, and again by reflection and transmission at D2 at the back of the glass 
sheet. 
 
An eye, at A, will focus the reflected beams and an eye at B will focus the transmitted beams. 
Thus interference patterns can be observed in both the reflected and transmitted beams. 
 

Condition for maxima and minima in the fringes formed in a thin film 
 
The following explanations are for light incident normally on a thin film or sheet of glass. The 
diagrams only show light paths at an angle to distinguish clearly the different paths. 
 
Reflected light 
 

 
 
The ray following path 1 reflects off the glass which has a higher refractive index than air. It 
therefore experiences a π phase change. 
 
The ray following path 2 reflects off air so experiences no phase change on reflection.  
 



 
However, it travels through the glass twice so has an optical path difference compared to ray 1 
of 2nt, where n is the refractive index of the glass. 
 
Therefore for constructive interference for the reflected light, i.e. for rays 1 and 2 to be in phase, 
then the optical path difference 2nt must give a π phase change. 
 
Therefore: 

2nt = m +1/2)λ,      where m is an integer. 
 
For destructive interference for the reflected light, i.e. for rays 1 and 2 to be exactly out of phase, 
then the optical path difference 2nt must give zero phase change. 
 
Therefore: 

2nt = mλ       m is an integer. 
 
Note that these statements are the reverse of what we are used to seeing. 
 
Transmitted light 
 

 
The ray following path 3 passes through the glass with zero phase change.  
 
Te ray following path 4 reflects off air twice so experiences no phase changes on reflection. 
However, it travels through the glass twice more than path 3 so has an optical path difference 
compared to ray 3 of 2nt, where n is the refractive index of the glass. 
 
Therefore for constructive interference for the transmitted light, i.e. for rays 3 and 4 to be in 
phase, then the optical path difference 2nt must give zero phase change. 
 
Therefore: 
 

2nt = (m+1/2)λ,      where m is an integer. 
 
Note 
For a certain thickness of thin film the conditions are such that the reflected light and 
transmitted light have opposite types of interference. Therefore energy is conserved at all times. 
 



 
 

Example 
A sheet of mica is 4.80 μm thick. Light of wavelength 512 nm is shone onto the mica. When 
viewed from above, will there be constructive, destructive, or partial destructive interference? 
The refractive index of mica is 1.60 for light of this wavelength. 
 
Solution 
For destructive interference,    

2nt = mλ 
                                               2 × 1.60 × 4.80 × 10−6 = m × 512 × 10−9 
                                                                                 m = 30 
 
This is an integer. Hence destructive interference is observed 
 
Wedge Fringes 
 

Two glass slides are arranged as shown below. 
 

 
 
Division of amplitude takes place at the lower surface of the top glass slide. 
 
When viewed from above the optical path difference = 2t 
 
There is a phase difference of π on reflection at p.  
 
Hence the condition for a dark fringe is 2t = mλ assuming an air wedge. 
 
For the next dark fringe, t increases by λ/2 (see right hand sketch above). 
 

Thus the spacing of fringes, Δx, is such that
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For a wedge of length L and spacing D 
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The fringe spacing is given by  
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where λ is the wavelength of light in air.  



 
In practice the distance across a number of fringes is measured and Δx determined. 
 
Notice that the fringes are formed inside the wedge, and that the two reflected rays are 
diverging. The eye, or a microscope, must be focussed between the plates for viewing the 
fringes. 
 
A wedge can be formed by two microscope slides in contact at one end and separated by a 
human hair or ultra-thin foil at the other end. In this way the diameter of a human hair can be 
measured.  
 
Similarly, if a crystal is placed at the edge and heated, the thermal expansion can be 
measured by counting the fringes as the pattern changes. 
 
Non-reflecting Coating 
 

Good quality lenses in a camera reflect very little light and appear dark or slightly 
purple. A thin coating of a fluoride salt such as magnesium fluoride on the surface of 
the lens allows the majority of the light falling on the lens to pass through. 
The refractive index, n, of the coating is chosen such that 1 < n < nglass. 
 
 
 
 
 
 
 
 
 
 
Notice that there is a phase change of π at both the first and second surfaces. 
 
For cancellation of reflected light: optical path difference = λ/2 
 
Optical path in fluoride = 2nd,  thus 2nd= λ/2,  
 

Therefore d = 
n4


 

 
Complete cancellation is for one particular wavelength only. Partial cancellation occurs for other 
wavelengths. 
 
The wavelength chosen for complete cancellation is in the yellow/green (i.e. middle) of the 
spectrum. This is why the lens may look purple because the reflected light has no yellow/green 
present. The red and blue light are partially reflected to produce the purple colour observed. 
 
 
 



 
 

 
Colours in thin films 
 
When a soap film is held vertically in a ring and is illuminated with monochromatic light, it 
initially appears coloured all over. However when the soap drains downwards a wedge shaped 
film is produced, with the top thinner than the bottom. Thus horizontal bright and dark fringes 
appear.  
 
When illuminated by white light, colours are formed at positions where the thickness of the film 
is such that constructive interference takes place for that particular colour. Just before the soap 
film breaks, the top appears black because the film is so thin there is virtually no path difference 
in the soap. Destructive interference occurs because of the phase change on reflection. 
 
Similar colours are observed when a thin film of oil is formed on water. 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



INTERFERENCE – DIVISION OF WAVEFRONT 
 

Division of Wavefront 
 
When light from a single point source is incident on two small slits, two coherent beams of light 
can be produced. Each slit acts as a secondary source due to diffraction. If an extended source is 
used, each part of the wavefront will be incident on the slit at a different angle. Each part of the 
source will then produce a fringe pattern, but slightly displaced. When the intensity of all the 
patterns is summed the overall interference pattern may be lost. However a line source parallel 
to the slits is an exception.  
 
Compare this with the use of an extended source in ‘division of amplitude’.  
 
Young's Slits Experiment 
 
The diagram below shows light from a single source of monochromatic light incident on a double 
slit. The light diffracts at each slit and the overlapping diffraction patterns produce interference. 
 

 
 
 
 

 
 
 
 
 
 
 
 
A bright fringe is observed at P. Angle PMO is θ. 
 
N is a point on S1P such that NP = S1P. Since P is the nth bright fringe S2N = nλ 
 
For small values of θ S1N cuts MP at almost 90° giving angle S2 S1N = θ. 
 
Again providing θ is very small, sin θ = tan θ = θ (in radians) 
 

From triangle S2S1N:    
d
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Therefore, the fringe separation between adjacent fringes is: 
d

D
x
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Note 
This formula only applies if x<<D, which gives a small value for θ. This is likely to be true for light 
waves but not for microwaves. The position of the fringes is dependent on the wavelength. Thus 
if white light is used we can expect overlapping colours either side of a central white maximum. 
The red part of the spectrum, with the longer wavelength, will be the furthest from this white 
maximum (Δxred > Δxviolet since λred > λviolet). 
 

 
 
 
 

Polarisation 
 
Polarised and unpolarised waves 
 
Light is a travelling wave, and is part of the electromagnetic spectrum. In all electromagnetic 
waves the electric field and magnetic field vary. The diagram below shows a 3-dimensional 
picture of such a wave. 

 
The above diagram shows the variation of the electric field strength, E, in the x-z plane and the 
variation of the magnetic induction, B, in the x-y plane. In this example the electric field strength 
is only in one plane. The wave is said to be plane polarised, or linearly polarised. For example, in 
Britain this is the way that T.V. waves are transmitted. Aerials are designed and oriented to pick 
up the vertical electric field strength vibrations. These vibrations contain the information 
decoded by the electronic systems in the television. 
 
Notice that the electromagnetic wave is made up of two mutually perpendicular transverse 
waves. The oscillations of E and B. 
 
Light from an ordinary filament lamp is made up of many separate electromagnetic waves 
produced by the random electron transitions in the atoms of the source. So unlike the directional 
T.V waves, light waves from a lamp consist of many random vibrations. This is called an 
unpolarised wave. 
 
When looking at an unpolarised wave coming towards you the direction of the electric field 
strength vector would appear to be vibrating in all direction, as shown in the diagram (i) on the 
left below. The magnetic induction vector would be perpendicular to the electric field strength 
vector, hence this too would be vibrating in all directions. However when discussing polarisation 
we refer to the electric field strength vector only. 
 



 
All the individual electric field strength vectors could be resolved in two mutually perpendicular 
direction to give the other representation of a unpolarised wave, as shown below in the centre 
diagram (ii). The right hand diagram (iii) represents a polarised wave. 
 

 
Longitudinal and transverse waves 
 
Note that only transverse waves can be polarised. Longitudinal waves, e.g. sound waves, cannot 
be polarised. 

 
 

 
 

Polarisation using Filters 
 

We can produce a linearly polarised wave if we can somehow absorb the vibrations in all the 
other directions except one. 
 
In 1852 William Bird Herapath discovered that a crystal of iodo-quinine sulphate transmitted one 
plane of polarisation, the other planes being absorbed. In 1938 Edwin Land produced the 
material ‘Polaroid’, which has a series of parallel long hydrocarbon chains. Iodine atoms 
impregnate the long chains providing conduction electrons. Light is only transmitted when the 
electric field strength vector is perpendicular to the chain. 
 
The arrangement below shows a polaroid filter at X producing linearly polarised light. 
The polaroid at X is called a polariser. Vibrations of the electric field strength vector 
at right angles to the axis of transmission are absorbed. 
 

 
A second polaroid at Y is placed perpendicular to the first one, as shown above. This is called an 
analyser. The analyser absorbs the remaining vibrations because its axis of transmission is at 
right angles to the polariser at X and no light is seen by the eye. The light between X and Y is 
called linearly or plane polarisation. 



 
 

 
 
These effects also can be demonstrated using microwaves and a metal grid. 

 
 

The microwaves emitted by the horn are plane polarised. In this example the electric field 
strength vector is in the vertical plane. The waves are absorbed by the rods and re-radiated in all 
directions. Hence there will be a very low reading on the receiver, R. When the metal grid is 
rotated through 90o the waves will be transmitted, and the reading on the receiver will rise. 
Notice that the microwaves are transmitted when the plane of oscillation of the electric field 
strength vector is perpendicular to the direction of the rods. 
 
Modern mobile devices and computer monitors produce polarised light. By placing a polarising 
filter in front of the screen you can observe variations in the transmitted and absorbed light at 
different angles. Some screens do not have all colours polarised in the same plane and the 
screen colour will change dynamically when you change the angle of the filter. 
 
 

Polarisation by Reflection 
 
Plane polarised waves can be produced naturally by light reflecting from any electrical insulator, 
like glass. When refraction takes place at a boundary between two transparent materials the 
components of the electric field strength vector parallel to the boundary are largely reflected. 
Thus reflected light is partially plane polarised. 
 
Plane polarisation at the Brewster angle 
 

 
 

 
Consider a beam of unpolarised light incident on a sheet of smooth glass. This beam is partially 
reflected and partially refracted. The angle of incidence is varied and the reflected ray viewed 
through an analyser, as shown above. It is observed that at a certain angle of incidence ip the 
reflected ray is plane polarised. No light emerges from the analyser at this angle. 



 
The polarising angle ip or Brewster’s angle is the angle of incidence which causes the reflected 
light to be linearly polarised. 
 
This effect was first noted by an experimenter called Malus in the early part of the nineteenth 
century. Later Brewster discovered that at the polarising angle ip the refracted and reflected rays 
are separated by 90°. 
 
Consider the diagram above, which has this 90° angle marked: 
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Example 
 
Calculate the polarising angle for glycerol, n = 1.47. 
What is the angle of refraction inside the glycerol at the Brewster angle? 
 
Solution 
Using the equation   n = tan ip    

            1.47 = tan ip   
            ip = 56°. 

 
At the Brewster angle, which is the polarising angle, 
 

 angle of refraction + ip = 90° thus angle of refraction = 34°. 
 
 
 

Reduction of Glare by Polaroid sunglasses 
 
When sunlight is reflected from a horizontal surface, e.g. a smooth lake of water, into the eye, 
eyestrain can occur due to the glare associated with the reflected light. The intensity of this 
reflected beam can be reduced by wearing polaroid sunglasses. These act as an analyser and will 
cut out a large part of the reflected polarised light. 
 


